Original article | Journal of Biometry Studies 2022, Vol. 2(2) 78-86
Fatih SİVRİKAYA, Döndü DEMİREL
pp. 78 - 86 | DOI: https://doi.org/10.29329/JofBS.2022.445.05 | Manu. Number: MANU-2212-21-0002.R1
Published online: December 29, 2022 | Number of Views: 30 | Number of Download: 311
Abstract
Forest ecosystems are one of the most important systems in capturing atmospheric carbon dioxide (CO2) and play an essential role in mitigating climate change. Forest ecosystems provide biodiversity, soil conservation, recreation areas, wildlife habitat, nutrient cycling, carbon storage and oxygen production. According to the Climate Change Framework Convention, determining and reporting the amount of carbon accumulation in forest ecosystem is of great importance. Different methods such as allometric equations, carbon expansion factor and remote sensing methods are used to determine aboveground carbon (AGC) storage. Especially with the developing technology, remote sensing techniques are used intensively to determine AGC storage. Normalized Difference Vegetation Index (NDVI) are commonly used, especially in determining the amount of AGC storage. The aim of this study is to estimate AGC storage according to different methods and to investigate whether there are statistical differences in AGC storage estimation of these approaches. The research was carried out in pure Calabrian pine (Pinus brutia Ten.) stands in the Burmahanyayla planning unit in Antalya province in the Mediterranean region of Türkiye. Within the scope of the study, the amount of AGC storage was calculated by using the inventory study conducted in 2022 and the Landsat 9 satellite data. A paired sample t-test was used to statistically examine the difference in the quantity of AGC storage based on inventory data and remote sensing data using SPSS 23.0. The results reveal that there was no statistically significant difference in the AGC storage values between the two approaches in all sample plots.
Keywords: Allometric equations, Aboveground carbon storage, NDVI, Remote sensing
How to Cite this Article? |
---|
APA 6th edition Harvard Chicago 16th edition |
References |
---|
Anand, A., Pandey, P. C., Petropoulos, G. P., Pavlides, A., Srivastava, P. K., Sharma, J. K., & Malhi, R. K. M. (2020). Use of Hyperion for Mangrove Forest Carbon Stock Assessment in Bhitarkanika Forest Reserve: A Contribution Towards Blue Carbon Initiative. Remote Sensing, 12(4), 597. https://doi.org/10.3390/rs12040597 Askar, N. N., Phairuang, W., Wicaksono, P., & Sayektiningsih, T. (2018). Estimating Aboveground Biomass on Private Forest Using Sentinel-2 Imagery. Journal of Sensors, 2018, 6745629. https://doi.org/10.1155/2018/6745629 Baniya, B., Tang, Q., Huang, Z., Sun, S., & Techato, K. A. (2018). Spatial and Temporal Variation of NDVI in Response to Climate Change and the Implication for Carbon Dynamics in Nepal. Forests, 9(6), 329. https://doi.org/10.3390/f9060329 Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and Future Köppen-Geiger Climate Classification Maps at 1-km Resolution. Scientific Data, 5(1), 180214. https://doi.org/10.1038/sdata.2018.214 Berra, E. F., Brandelero, C., Pereira, R. S., Sebem, E., Goergen, L. C. D. G., Benedetti, A. C. P., & Lippert, D. B. (2012). Total Wood Volume Estimation of Eucalyptus Species by Images of Landsat Satellite. Ciência Florestal, 22(4), 853-864. https://doi.org/10.5902/198050987566 Bolat, N. (2019). ÇAKÜ Orman Fakültesi Araştırma ve Uygulama Ormanında Göktürk-2 uydu görüntüsü kullanılarak topraküstü biyokütle ve karbon depolama miktarlarının belirlenmesi [Master’s thesis, Çankırı Karatekin University]. (in Turkish) Bulut, S., Sivrikaya, F., & Günlü, A. (2022). Evaluating Statistical and Combine Method to Predict Stand Above-ground Biomass Using Remotely Sensed Data. Arabian Journal of Geosciences, 15(9), 838. https://doi.org/10.1007/s12517-022-10140-3 Çepel, N. (2003). Ekolojik sorunlar ve çözümleri. TÜBİTAK. (in Turkish) Chen, L., Ren, C., Zhang, B., Wang, Z., & Xi, Y. (2018). Estimation of Forest Above-ground Biomass by Geographically Weighted Regression and Machine Learning with Sentinel Imagery. Forests, 9(10), 582. https://doi.org/10.3390/f9100582 Cusack, D. F., Axsen, J., Shwom, R., Hartzell-Nichols, L., White, S., & Mackey, K. R. (2014). An Interdisciplinary Assessment of Climate Engineering Strategies. Frontiers in Ecology and the Environment, 12(5), 280-287. https://doi.org/10.1890/130030 Dos Reis, A. A., Carvalho, M. C., de Mello, J. M., Gomide, L. R., Ferraz Filho, A. C., & Acerbi Junior, F. W. (2018). Spatial Prediction of Basal Area and Volume in Eucalyptus Stands Using Landsat TM Data: An Assessment of Prediction Methods. New Zealand Journal of Forestry Science, 48(1), 1. https://doi.org/10.1186/s40490-017-0108-0 Dvorakova, K., Heiden, U., Pepers, K., Staats, G., van Os, G., & van Wesemael, B. (2023). Improving soil Organic Carbon Predictions from a Sentinel–2 Soil Composite by Assessing Surface Conditions and Uncertainties. Geoderma, 429, 116128. https://doi.org/10.1016/j.geoderma.2022.116128 Dvorakova, K., Shi, P., Limbourg, Q., & van Wesemael, B. (2020). Soil Organic Carbon Mapping from Remote Sensing: The Effect of Crop Residues. Remote Sensing, 12(12), 1913. https://doi.org/10.3390/rs12121913 FMP (2022). Forest management plans and inventory data of Burmahanyayla Planning Unit. General Directorate of Forestry. Gardin, L., Chiesi, M., Fibbi, L., & Maselli, F. (2021). Mapping Soil Organic Carbon in Tuscany through the Statistical Combination of Ground Observations with Ancillary and Remote Sensing Data. Geoderma, 404, 115386. https://doi.org/10.1016/j.geoderma.2021.115386 Goodale, C. L., Apps, M. J., Birdsey, R. A., Field, C. B., Heath, L. S., Houghton, R. A., ... & Shvidenko, A. Z. (2002). Forest Carbon Sinks in the Northern Hemisphere. Ecological Applications, 12(3), 891-899. https://doi.org/10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2 Gou, Y., Ryan, C. M., & Reiche, J. (2022). Large Area Aboveground Biomass and Carbon Stock Mapping in Woodlands in Mozambique with L-Band Radar: Improving Accuracy by Accounting for Soil Moisture Effects Using the Water Cloud Model. Remote Sensing, 14(2), 404. https://doi.org/10.3390/rs14020404 Güner, Ş. T., Diamantopoulou, M. J., Poudel, K. P., Çömez, A., & Özçelik, R. (2022). Employing Artificial Neural Network for Effective Biomass Prediction: An Alternative Approach. Computers and Electronics in Agriculture, 192, 1065960. https://doi.org/10.1016/j.compag.2021.106596 Günlü, A., & Ercanlı, İ. (2020). Artificial Neural Network Models by ALOS PALSAR Data for Aboveground Stand Carbon Predictions of Pure Beech Stands: A Case Study from Northern of Turkey. Geocarto International, 35(1), 17-28. https://doi.org/10.1080/10106049.2018.1499817 Günlü, A., Ercanli, I., Başkent, E. Z., & Çakır, G. (2014). Estimating Aboveground Biomass Using Landsat TM Imagery: A Case Study of Anatolian Crimean Pine Forests in Turkey. Annals of Forest Research, 57(2), 289-298. https://doi.org/10.15287/afr.2014.278 Günlü, A., Keleş, S., Ercanli, İ., & Şenyurt, M. (2021). Estimation of aboveground stand carbon using Landsat 8 OLI satellite ımage: A case study from Turkey. In P. K. Shit, H. R. Pourghasemi, P. Das, & G. S. Bhunia (Eds.), Spatial Modeling in Forest Resources Management (pp. 385-403). Springer, Cham. Imran, A. B., & Ahmed, S. (2018). Potential of Landsat-8 Spectral Indices to Estimate Forest Biomass. International Journal of Human Capital in Urban Management, 3(4), 303-314. Jiang, F., Sun, H., Chen, E., Wang, T., Cao, Y., & Liu, Q. (2022). Above-ground Biomass Estimation for Coniferous Forests in Northern China Using Regression Kriging and Landsat 9 Images. Remote Sensing, 14(22), 5734. https://doi.org/10.3390/rs14225734 Kahriman, A., Sönmez, T., Yavuz, M., Şahin, A., Yılmaz, S., Uzun, M., Kumaş, G., & Genç, Y. (2016). Antalya ve Mersin Yöresi Saf Kızılçam Meşcerelerinde Hasılat Araştırmaları, (TÜBİTAK-TOVAG, Project No: 112O808). (in Turkish) Kauranne, T., Joshi, A., Gautam, B., Manandhar, U., Nepal, S., Peuhkurinen, J., Hämäläinen, J., Junttila, V., Gunia K., Latva-Käyrä, P., Kolesnikov, A., Tegel, K., & Leppänen, V. (2017). LiDAR-Assisted Multi-Source Program (LAMP) for Measuring Above Ground Biomass and Forest Carbon. Remote Sensing, 9(2), 154. https://doi.org/10.3390/rs9020154 Keleş, S., Günlü, A., & Ercanli, İ. (2021). Estimating aboveground stand carbon by combining Sentinel-1 and Sentinel-2 satellite data: A case study from Turkey. In P. K. Shit, H. R. Pourghasemi, P. P. Adhikary, G. S. Bhunia, & V. P. Sati (Eds.), Forest Resources Resilience and Conflicts (pp. 117-126). Elsevier. Labrecque, S., Fournier, R. A., Luther, J. E., & Piercey, D. (2006). A Comparison of Four Methods to Map Biomass from Landsat-TM and Inventory Data in Western Newfoundland. Forest Ecology and Management, 226(1-3), 129-144. https://doi.org/10.1016/j.foreco.2006.01.030 Lal, R. (2008). Carbon Sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 815-830. https://doi.org/10.1098/rstb.2007.2185 Li, Y., Han, N., Li, X., Du, H., Mao, F., Cui, L., Liu, T., & Xing, L. (2018). Spatiotemporal Estimation of Bamboo Forest Aboveground Carbon Storage Based on Landsat Data in Zhejiang, China. Remote Sensing, 10(6), 898. https://doi.org/10.3390/rs10060898 Myeong, S., Nowak, D. J., & Duggin, M. J. (2006). A Temporal Analysis of Urban Forest Carbon Storage using remote sensing. Remote Sensing of Environment, 101(2), 277-282. https://doi.org/10.1016/j.rse.2005.12.001 Nurda, N., Noguchi, R., & Ahamed, T. (2020). Forest Productivity and Carbon Stock Analysis from Vegetation Phenological Indices Using Satellite Remote Sensing in Indonesia. Asia-Pacific Journal of Regional Science, 4(3), 657-690. https://doi.org/10.1007/s41685-020-00163-7 Ou, G., Li, C., Lv, Y., Wei, A., Xiong, H., Xu, H., & Wang, G. (2019). Improving Aboveground Biomass Estimation of Pinus densata Forests in Yunnan Using Landsat 8 Imagery by Incorporating Age Dummy Variable and Method Comparison. Remote Sensing, 11(7), 738. https://doi.org/10.3390/rs11070738 Perry, E., Sheffield, K., Crawford, D., Akpa, S., Clancy, A., & Clark, R. (2022). Spatial and Temporal Biomass and Growth for Grain Crops Using NDVI Time Series. Remote Sensing, 14(13), 3071. https://doi.org/10.3390/rs14133071 Pungpa, S., Chumkiew, S., & Piyatadsananon, P. (2023). Estimation of aboveground biomass and carbon stock using remote sensing data in Sakaerat Environmental Research Station, Thailand. In W. Boonpook, Z. Lin, P. Meksangsouy, & P. Wetchayont (Eds.) Applied Geography and Geoinformatics for Sustainable Development (pp. 207-215). Springer, Cham. Saglam, S., Ozdemir, E., Ozkan, U. Y., Demirel, T., & Makineci, E. (2020). Biomass Estimation of Aboveground Tree Components for Turkey Oak (Quercus cerris L.) in South-eastern Turkey. Environmental Monitoring and Assessment, 192(7), 418. https://doi.org/10.1007/s10661-020-08386-z Sakici, O. E., Seki, M., & Saglam, F. (2018). Above-ground Biomass and Carbon Stock Equations for Crimean Pine Stands in Kastamonu Region of Turkey. Fresenius Environmental Bulletin, 27(10), 7079-7089. Situmorang, J. P., Sugianto, S., & Darusman, D. (2016). Estimation of Carbon Stock Stands Using EVI and NDVI Vegetation Index in Production Forest of Lembah Seulawah Sub-District, Aceh Indonesia. Aceh International Journal of Science and Technology, 5(3), 126-139. https://dx.doi.org/10.13170/aijst.5.3.5836 Sivrikaya, F., & Bozali, N. (2012). Karbon Depolama Kapasitesinin Belirlenmesi: Türkoğlu Planlama Birimi Örneği. Bartın Orman Fakültesi Dergisi, 14(1), 69-76. (in Turkish) Sivrikaya, F., & Işık, M. (2022). Comparison of Biomass Estimation Approaches Based on Inventory Data: A Case Study in Kapıkaya Forest, Turkey. Environmental Engineering & Management Journal, 21(5), 737-743. Sivrikaya, F., Baskent, E. Z., & Bozali, N. (2013). Spatial Dynamics of Carbon Storage: A Case Study from Turkey. Environmental Monitoring and Assessment, 185(11), 9403-9412. https://doi.org/10.1007/s10661-013-3260-x Sivrikaya, F., Keleş, S., & Çakir, G. (2007). Spatial Distribution and Temporal Change of Carbon Storage in Timber Biomass of Two Different Forest Management Units. Environmental Monitoring and Assessment, 132(1), 429-438. https://doi.org/10.1007/s10661-006-9545-6 Tavasoli, N., Arefi, H., Samiei-Esfahany, S., & Ronoud, Q. (2019). Modelling the Amount of Carbon Stock Using Remote Sensing in Urban Forest and Its Relationship with Land Use Change. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42(4), 1051-1058. https://doi.org/10.5194/isprs-archives-XLII-4-W18-1051-2019 Turgut, R., & Günlü, A. (2022). Estimating Aboveground Biomass Using Landsat 8 OLI Satellite Image in Pure Crimean Pine (Pinus nigra J.F. Arnold subsp. pallasiana (Lamb.) Holmboe) Stands: A Case from Turkey. Geocarto International, 37(3), 720-734. https://doi.org/10.1080/10106049.2020.1737971 Wallis, C. I., Crofts, A. L., Inamdar, D., Arroyo-Mora, J. P., Kalacska, M., Laliberté, É., & Vellend, M. (2023). Remotely Sensed Carbon Content: The Role of Tree Composition and Tree Diversity. Remote Sensing of Environment, 284, 113333. https://doi.org/10.1016/j.rse.2022.113333 Wang, S., Zhou, M., Zhuang, Q., & Guo, L. (2021). Prediction Potential of Remote Sensing-Related Variables in the Topsoil Organic Carbon Density of Liaohekou Coastal Wetlands, Northeast China. Remote Sensing, 13(20), 4106. https://doi.org/10.3390/rs13204106 Wang, S., Zhuang, Q., Jin, X., Yang, Z., & Liu, H. (2020). Predicting Soil Organic Carbon and Soil Nitrogen Stocks in Topsoil of Forest Ecosystems in Northeastern China Using Remote Sensing Data. Remote Sensing, 12(7), 1115. https://doi.org/10.3390/rs12071115 Wharton, E. H., & Griffith, D. M. (1993). Methods to estimate total forest biomass for extensive forest inventories: Applications in the northeastern US. US Department of Agriculture, Forest Service. Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., Ichii, K., Ni, W., Pang, Y., Rahman, A. F., Sun, G., Yuan, W., Zhang L., & Zhang, X. (2019). Remote Sensing of the Terrestrial Carbon Cycle: A Review of Advances over 50 Years. Remote Sensing of Environment, 233, 111383. https://doi.org/10.1016/j.rse.2019.111383 |