Original article | Journal of Biometry Studies 2022, Vol. 2(1) 1-6
Angeli̇ca B. BERMIL, Jherry Bonn D. HAMISAIN, Albaris B. TAHILUDDIN, Rosi̇ta T. JUMDAIN, Mari̇a Li̇za B. TORING-FARQUERABAO
pp. 1 - 6 | DOI: https://doi.org/10.29329/JofBS.2022.444.01 | Manu. Number: MANU-2203-10-0001.R1
Published online: June 29, 2022 | Number of Views: 71 | Number of Download: 236
Abstract
The occurrence of ice-ice disease is among the main issues affecting Kappaphycus production. The abiotic and biotic factors have major contributions to causing this disease. As biotic factors, marine-derived fungi (MDF) are known to be capable of causing the ice-ice disease. In this study, we determined the abundance of MDF from both healthy and ice-ice-infected nutrient-enriched Kappaphycus alvarezii and K. striatus in the seaweed farms of Tongehat, Sibutu, Tawi-Tawi, southern Philippines, following serial dilution procedure using malt extract agar. Results revealed that the abundance of MDF in ice-ice-infected nutrient-enriched K. alvarezii (3.04 x 10^4 CFU g⁻¹) had shown higher significance (p<0.05) when compared with healthy nutrient-enriched K. alvarezii (3.32 x 10^3 CFU g⁻¹). Similarly, the abundance of MDF in ice-ice-infected nutrient-enriched K. striatus (9.31 x 10^3 CFU g⁻¹) also appeared to have higher significance (p<0.01) than healthy nutrient-enriched K. striatus (6.10 x 10^2 CFU g⁻¹). In terms of seaweed species comparison, the abundance of MDF in healthy nutrient-enriched K. alvarezii had a higher significance (p<0.05) than in healthy nutrient-enriched K. striatus, and the abundance of MDF in ice-ice-infected nutrient-enriched K. alvarezii also had higher significance (p<0.05) than ice-ice-infected nutrient-enriched K. striatus. The great number of MDF in ice-ice-infected nutrient-enriched Kappaphycus suggests that MDF may be potential causative agents and have the capability of inducing ice-ice disease in farmed nutrient-enriched Kappaphycus.
Keywords: Abundance, Ice-ice disease, Kappaphycus alvarezii, Kappaphycus striatus, Marine-derived fungi
How to Cite this Article? |
---|
APA 6th edition Harvard Chicago 16th edition |
References |
---|
Bugni, T. S., & Irelan, C. M. (2004). Marine Derived Fungi: A Chemically and Biologically Diverse Group of Microorganisms. Natural Products Reports, 21, 143-163. https://doi.org/10.1039/b301926h Ding, B., Yin, Y., Zhang, F., & Li, Z. (2011). Recovery and Phylogenetic Diversity of Culturable Fungi Associated with Marine Sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Marine Biotechnology, 13, 713-721. https://doi.org/10.1007/s10126-010-9333-8 Gnavi, G., Garzoli, L., Poli, A., Prigione, V., Burgaud, G., & Varase, G. C. (2017). The Culturable Mycobiota of Flabellia petiolata: First Survey of Marine Fungi Associated to a Mediterranean Green Alga. PLoS ONE, 12(4), e0175941. https://doi.org/10.1371/journal.pone.0175941 Gonzalez-Farias, F., & Mee, L. D. (1988). Effect of Mangrove Humiclike Substances on Biodegradation Rates of Detritus. Journal of Experimental Marine Biology and Ecology, 119, 1-13. https://doi.org/10.1016/0022-0981(88)90148-7 Hatai, K. (2012). Diseases of Fish and Shellfish Caused by Marine Fungi. Progress in Molecular and Subcellular Biology, 53, 15-52. https://doi.org/10.1007/978-3-642-23342-5_2 Hurtado, A. Q., & Agbayani, R. F. (2002). Deep Sea Farming of Kappaphycus Using Multiple Raft, Long-line Method. Botanica Marina, 45(5), 438-444. https://doi.org/10.1515/BOT.2002.044 Johnson, T. W., & Sparrow, F. K. (1961). Fungi in oceans and estuaries. Weinheim. Jones, E. B. G. (1994). Ultrastructure and Taxonomy of the Aquatic Ascomycetous Order Halosphaeriales. Canadian Journal of Botany, 73(1), 790-801. https://doi.org/10.1139/b95-324 Jones, E. B. G., & Pang, K. L. (2012). Marine fungi and fungal-like organisms. De Gruyter. Kataržytė, M., & Petkuvienė, J. (2017). Microorganisms Associated with Charophytes under Different Salinity Condition. Oceanologia, 59(2), 177-186. https://doi.org/10.1016/j.oceano.2016.10.002 Kohlmeyer, J., & Kohlmeyer. E. (1979). Marine mycology: The higher fungi. Academic Press. Kohlmeyer, J., & Volkmann-Kohlmeyer, B. (1991). Illustrated Key to the Filamentous Higher Marine Fungi. Botanica Marina, 34(1), 1-61. https://doi.org/10.1515/botm.1991.34.1.1 Khoo, M. I., Wei, L. S., Omar, I. C., & Saufi, R. A. (2016). Comparison of Kappaphycus striatus (F. Schmitz) Doty Ex P.C. Silva (Rhodophyta, Soliariciaceae) Performance in Grassy, Sandy and Rocky Seabeds at Pulau Kerindingan, Semporna, Sabah. International Journal of Agriculture, Forestry and Plantation, 3, 39-44. Largo, D. B., Fukami, K., & Nishijima, T. (1999). Time-dependent Attachment Mechanism of Bacterial Pathogen During Ice-ice Infection in Kappaphycus alvarezii (Gigartinales, Rhodophyta). Journal of Applied Phycology, 11, 129-136. https://doi.org/10.1023/A:1008081513451 Li, Q., & Wang, G. (2009). Diversity of Fungal Isolates from Three Hawaiian Marine Sponges. Microbiological Research, 164(2), 233-241. https://doi.org/10.1016/j.micres.2007.07.002 Maturin, L. J., & Peeler, J. T. (2001). Aerobic plate count. In Bacteriological Analytical Manual. FDA. https://www.fda.gov/Food/FoodScienceReacher/Labo ratoryMethods/ucm06 3346.htm Miller, J. D., & Jones, E. B. G. (1983). Observations on the Association of Thraustochytrid Marine Fungi with Decaying Seaweed. Botanica Marina, 26(7), 345-351. https://doi.org/10.1515/botm.1983.26.7.345 Mouzouras, R. (1989). Decay of Mangrove Wood by Marine Fungi. Botanica Marina, 32(1), 65-70. https://doi.org/10.1515/botm.1989.32.1.65 Pang, T., Zhang, L. T., Liu, J. G., Li, H., & Li, J. P. (2015). Differences in Photosynthetic Behaviour of Kappaphyucs alvarezii and Kappaphycus striatus During Dehydration and Rehydration. Marine Biology Research, 11(7), 765-772. https://doi.org/10.1080/17451000.2015.1007876 Raghukumar, S., Sathe-Patak, V., Sharma, S., & Raghukumar, C. (1995). Thraustochytrid and Fungal Component of Marine Detritus. III. Field Studies on Decomposition of the Mangrove Rhizophora apiculata. Aquatic Microbial Ecology, 9, 117-125. Richards, T. A., Leonard, G., Mahié, F., Campo, J., Romac, S., Jones, M. D. M., Maguire, F., Dunthorn, M., Vargas, C., Massana, R., & Chambouvet, A. (2015). Molecular Diversity and Distribution of Marine Fungi across 130 European Environmental Samples. Proceedings of Royal Society Biological Science, 282, 20152243. https://doi.org/10.1098/rspb.2015.2243 San, M. D. (2012). The farming of seaweeds. European Union SmartFish Programme Report: SF/2012/28. Sarri, J. H., Abdulmutalib, Y. A., Mohammad Tilka, M. E., Terzi, E., & Tahiluddin, A. B. (2022). Effects of Inorganic Nutrient Enrichment on the Carrageenan Yield, Growth, and Ice-ice Disease Occurrence of Red Alga Kappaphycus striatus. Aquatic Research, 5(2), 99-109. https://doi.org/10.3153/AR22009 Shahidi, F., & Rahman, J. (2018). Bioactives in Seaweeds, Algae, and Fungi and Their Role in Health Promotion. Journal of Food Bioactives, 2, 58-81. https://doi.org/10.31665/JFB.2018.2141 Simões, M. F., Antunes, A., Ottoni, C. A., Amini, M. S., Alam, I., Alzubaidy, H., Mokhtar, N., Archer, J. A. C., & Bajic, V. B. (2015). Soil and Rhizosphere Associated Fungi in Gray Mangroves (Avicennia marina) from the Red Sea - A Metagenomic Approach. Genomics, Proteomics and Bioinformatics, 13(5), 310-320. https://doi.org/10.1016/j.gpb.2015.07.002 Solis, M. J. L., Draeger, S., & Cruz, T. E. E. (2010). Marine-derived Fungi from Kappaphycus alvarezii and K. striatum as Potential Causative Agents of Ice-ice Disease in Farmed Seaweeds. Botanica Marina, 53(6), 587-594. https://doi.org/10.1515/bot.2010.071 Tahiluddin, A. B. (2018). Influence of fertilization on the occurrence of Vibrio, “ice-ice” disease and growth of seaweed Kappaphycus striatus (F. Schmitz) Doty ex P.C. Silva. [Master’s Thesis. University of the Philippines Visayas]. Tahiluddin, A. B., & Terzi, E. (2021a). Ice-ice Disease in Commercially Cultivated Seaweeds Kappaphycus spp. and Eucheuma spp.: A Review on the Causes, Occurrence, and Control Measures. Marine Science and Technology Bulletin, 10(3), 234-243. https://doi.org/10.33714/masteb.917788 Tahiluddin, A. B., & Terzi, E. (2021b). An Overview of Fisheries and Aquaculture in the Philippines. Journal of Anatolian Environmental and Animal Sciences, 6(4), 475-486. https://doi.org/10.35229/jaes.944292 Tahiluddin, A. B., Nuñal, S. N., Luhan, M. R. J., & Santander–de Leon, S. M. S. (2021a). Vibrio and Heterotrophic Marine Bacteria Composition and Abundance in Nutrient-enriched Kappaphycus striatus. Philippine Journal of Science, 150(6B), 1751-1763. Tahiluddin, A. B., Diciano, E. J., Robles, R. J. F., & Akrim, J. P. (2021b). Influence of Different Concentrations of Ammonium Phosphate on Nitrogen Assimilation of Red Seaweed Kappaphycus striatus. Journal of Biometry Studies, 1(2), 39-44. https://doi.org/10.29329/JofBS.2021.349.01 Tahiluddin, A. B., Alawi, T. I., Hassan, N. S. A., Jaji, S. N. A., & Terzi, E. (2021c). Abundance of Culturable Heterotrophic Marine Bacteria in Ulva lactuca Associated with Farmed Seaweeds Kappaphycus spp. and Eucheuma denticulatum. Journal of Agricultural Production, 2(2), 44-47. https://doi.org/10.29329/agripro.2021.360.1 Taylor, M. W., Radax, R., Steger, D., & Wagner, M. (2007). Sponge-associated Microorganisms: Evolution, Ecology, and Biotechnological Potential. Microbiology and Molecular Biology Review, 71(2), 295-347. https://doi.org/10.1128/MMBR.00040-06 Valiela, I., Koumjian, L., Swain, T., Teal, J. M., & Hobbie, J. E. (1979). Cinnamic Acid Inhibits Detritus Feeding. Nature, 280, 55-57. https://doi.org/10.1038/280055a0 |