|  e-ISSN: 2791-7169

Original article | Journal of Biometry Studies 2021, Vol. 1(2) 58-64

Fractional SVIR model for COVID-19 under Caputo derivative

Nezihal GOKBULUT, David AMILO, Bilgen KAYMAKAMZADE

pp. 58 - 64   |  DOI: https://doi.org/10.29329/JofBS.2021.349.04   |  Manu. Number: MANU-2111-04-0004.R1

Published online: December 30, 2021  |   Number of Views: 85  |  Number of Download: 420


Abstract

COVID-19 has been an outbreak since December 2019 all around the world. There exist many studies in literature that examines the future of the pandemic and the effect of control strategies via mathematical modeling. Main aim of mathematical modeling in epidemiology and health sciences is applying the theory to real world health problems. In this paper, world population is divided into four compartments for the construction of SVIR model. That is, it is assumed that population consists of susceptible (S), vaccinated (V), infected (I), and recovered (R) individuals. Fractional mathematical models are very popular nowadays since it counts previous state of problems. While the construction of this model, fractional derivative is added with the purpose of seeing memory effect.

Keywords: Mathematical modelling, Fractional Caputo derivative, COVID-19, Vaccination


How to Cite this Article?

APA 6th edition
GOKBULUT, N., AMILO, D. & KAYMAKAMZADE, B. (2021). Fractional SVIR model for COVID-19 under Caputo derivative . Journal of Biometry Studies, 1(2), 58-64. doi: 10.29329/JofBS.2021.349.04

Harvard
GOKBULUT, N., AMILO, D. and KAYMAKAMZADE, B. (2021). Fractional SVIR model for COVID-19 under Caputo derivative . Journal of Biometry Studies, 1(2), pp. 58-64.

Chicago 16th edition
GOKBULUT, Nezihal, David AMILO and Bilgen KAYMAKAMZADE (2021). "Fractional SVIR model for COVID-19 under Caputo derivative ". Journal of Biometry Studies 1 (2):58-64. doi:10.29329/JofBS.2021.349.04.

References

    Abdo, M. S., Shah, K., Wahash, H. A., & Panchal, S. K. (2020). On a Comprehensive Model of the Novel Coronavirus (COVID-19) under Mittag-Leffler Derivative. Chaos, Solitons & Fractals, 135, 109867. https://doi.org/10.1016/j.chaos.2020.109867

    Ahmad, S., Ullah, A., Al-Mdallal, Q. M., Khan, H., Shah, K., & Khan, A. (2020). Fractional Order Mathematical Modeling of COVID-19 Transmission. Chaos, Solitons & Fractals, 139, 110256. https://doi.org/10.1016/j.chaos.2020.110256

    Baleanu, D., Mohammadi, H., & Rezapour, S. (2020). A Fractional Differential Equation Model for the COVID-19 Transmission by Using the Caputo-Fabrizio Derivative. Advances in Difference Equations, 299, 1-27. https://doi.org/10.1186/s13662-020-02762-2

    Bedford, T., Greninger, A. L., Roychoudhury, P., Starita, L. M., Famulare, M., Huang, M. L., & Jerome, K. R. (2020). Cryptic Transmission of SARS-CoV-2 in Washington State. Science, 370(6516), 571-575. https://doi.org/10.1126/science.abc0523

    CDC (2019). Coronavirus Disease 2019 https://www.cdc.gov/coronavirus/2019-ncov/index.html

    Chaturvedi, P., Ramalingam, N., & Singh, A. (2020). Is COVID-19 Man-made?. Cancer Research, Statistics, and Treatment, 3(2), 284-286. https://doi.org/10.4103/CRST.CRST_166_20

    Delavari, H., Baleanu, D., & Sadati, J. (2012). Stability Analysis of Caputo Fractional-order Nonlinear Systems Revisited. Nonlinear Dynamics, 67(4), 2433-2439. https://doi.org/10.1007/s11071-011-0157-5

    Diethelm, K., & Freed, A. D. (1998). The FracPECE Subroutine for the Numerical Solution of Differential Equations of Fractional Order. Forschung und Wissenschaftliches Rechnen, 1999, 57-71.

    Garrappa, R. (2014). Short Tutorial: Solving Fractional Differential Equations by Matlab Codes. Department of Mathematics, University of Bari, Italy.

    Gorbalenya, A. E., Baker, S. C., Ralph S. Baric, R. S., de Groot, R. J., Drosten, C., Gulyaeva, A. A., Haagmans, B. L., Lauber, C., Leontovich, A. M., Neuman, B. W., Penzar, D., Perlman, S., Poon, L. L. M., Samborskiy, D. M., Sidorov, I. A., Sola, I., & Ziebuhr, J. (2020). The Species Severe Acute Respiratory Syndrome-related Coronavirus: Classifying 2019-nCoV and Naming It SARS-CoV-2. Nature Microbiology, 5, 536–544. https://doi.org/10.1038/s41564-020-0695-z  

    Han, Q., Lin, Q., Jin, S., & You, L. (2020). Coronavirus 2019-nCoV: A Brief Perspective from the Front Line. Journal of Infection, 80(4), 373-377. https://doi.org/10.1016/j.jinf.2020.02.010

    He, F., Deng, Y., & Li, W. (2020). Coronavirus disease 2019: What We Know?. Journal of Medical Virology, 92(7), 719-725. https://doi.org/10.1002/jmv.25766

    Hon, K. L., Leung, K. K., Leung, A. K., Sridhar, S., Qian, S., Lee, S. L., & Colin, A. A. (2020). Overview: The History and Pediatric Perspectives of Severe Acute Respiratory Syndromes: Novel or Just Like SARS. Pediatric Pulmonology, 55(7), 1584-1591. https://doi.org/10.1002/ppul.24810

    Kaymakamzade, B. (2017). Dynamics of two strain epidemic model with vaccine and delay [PhD Thesis, Near East University].

    WHO (2020). Novel Coronavirus-China. https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en

    Peeri, N. C., Shrestha, N., Rahman, M. S., Zaki, R., Tan, Z., Bibi, S., & Haque, U. (2020). The SARS, MERS and Novel Coronavirus (COVID-19) Epidemics, the Newest and Biggest Global Health Threats: What Lessons Have We Learned?. International Journal of Epidemiology, 49(3), 717-726. https://doi.org/10.1093/ije/dyaa033

    Singhal, T. (2020). A Review of Coronavirus Disease-2019 (COVID-19). Indian Journal of Pediatrics, 87(4), 281-286. https://doi.org/10.1007/s12098-020-03263-6

    Tahir, M., Shah, S. I., Zaman, G., & Khan, T. (2019). Stability Behaviour of Mathematical Model MERS Corona Virus Spread in Population. Filomat, 33(12), 3947-3960.

    Yavuz, M., Coşar, F. Ö., Günay, F., & Özdemir, F. N. (2021). A New Mathematical Modeling of the COVID-19 Pandemic Including the Vaccination Campaign. Open Journal of Modeling and Simulation, 9(3), 299-321. https://doi.org/10.4236/ojmsi.2021.93020