|  e-ISSN: 2791-7169

Original article | Journal of Biometry Studies 2021, Vol. 1(1) 23-25

Parameter estimation of factors affecting milk yield in a multicollinearity by Bayesian Regression method

Aycan Mutlu YAĞANOĞLU

pp. 23 - 25   |  DOI: https://doi.org/10.29329/JofBS.2021.348.05   |  Manu. Number: MANU-2106-15-0011.R1

Published online: June 29, 2021  |   Number of Views: 46  |  Number of Download: 204


Abstract

The regression analysis determines the relationship model between dependent and independent variables. In this study, the body weight, milking time, milk yield and environmental factors obtained from 42 dairy cattle were used for internal and external temperatures. In this study, the Bayesian Regression method was used to estimate milk yield parameters in case of multicollinearity. According to the results, it was seen that Bayesian method can be applied successfully in the field of animal husbandry. It is thought that the use of this study for dairy cattle in other agricultural areas will be useful for better evaluation of the data obtained.

Keywords: Bayesian regression, Multicollinearity, Milk yield


How to Cite this Article?

APA 6th edition
YAGANOGLU, A.M. (2021). Parameter estimation of factors affecting milk yield in a multicollinearity by Bayesian Regression method . Journal of Biometry Studies, 1(1), 23-25. doi: 10.29329/JofBS.2021.348.05

Harvard
YAGANOGLU, A. (2021). Parameter estimation of factors affecting milk yield in a multicollinearity by Bayesian Regression method . Journal of Biometry Studies, 1(1), pp. 23-25.

Chicago 16th edition
YAGANOGLU, Aycan Mutlu (2021). "Parameter estimation of factors affecting milk yield in a multicollinearity by Bayesian Regression method ". Journal of Biometry Studies 1 (1):23-25. doi:10.29329/JofBS.2021.348.05.

References
  1. Atkinson, A. C. (2000). Robust diagnostic regression analysis. McGraw-Hill Comp. [Google Scholar]
  2. Breusch, T. S. (1978). Testing for Autocorrelation in Dynamic Linear Models. Australian Economic Papers, 17(31), 334-355. https://doi.org/10.1111/j.1467-8454.1978.tb00635.x [Google Scholar] [Crossref] 
  3. Draper, N. R., & Smith, H. (1981). Applied regression analysis (2nd ed.). John Wiley & Sons. [Google Scholar]
  4. Durbin, J. (1970). Testing for Serial Correlation in Least Squares Regression when some of the Regressors are Lagged Dependent Variables. Econometrica, 38(3), 410-421. https://doi.org/10.2307/1909547 [Google Scholar] [Crossref] 
  5. Erdem, H., Atasever, S., & Kul, E. (2007). Gökhöyük Tarim İşletmesinde Yetiştirilen Siyah Alaca Sığırların Süt ve Döl Verim Özellikleri 2. Döl Verim Özellikleri. Ondokuzmayıs Üniversitesi Ziraat Fakültesi Dergisi, 22(1), 47-54. (in Turkish) [Google Scholar]
  6. Ferreira, W. J., Texeira, N. M., Torres, R. de A., & da Silva, M. B. (2002). Utilização da Produção de Leite No Dia do Controle na Avaliação Genéticaem Gado de Leite - Uma Revisão. Archivos Latinoamericanos de Producción Animal, 10(1), 46-53. (in Spanish) [Google Scholar]
  7. Jensen, J. (2001). Genetic Evaluation of Dairy Cattle Using Test-Day Models. Journal of Dairy Science, 84(12), 2803-2812. https://doi.org/10.3168/jds.S0022-0302(01)74736-4 [Google Scholar] [Crossref] 
  8. Leamer, E. E. (1973). Multicollinearity: A Bayesian Interpretation. The Rewiev of Economics and Statistics, 55(3), 371-380. https://doi.org/10.2307/1927962 [Google Scholar] [Crossref] 
  9. Ljung, G. M., & Box, G. E. P. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika, 65(2), 265-270. https://doi.org/10.1093/biomet/65.2.297 [Google Scholar] [Crossref] 
  10. Montgomery, D. C., & Peck, E. A. (1992). Introduction to linear regression analysis. John Wiley & Sons. [Google Scholar]
  11. Rao, C. R. (1973). Linear statistical inference and its application (2nd ed.). Wiley. [Google Scholar]
  12. Rekaya, R., Carbaño, M. J., & Toro, M. A. (1999). Use of Test Day Yield for The Genetic Evaluation of Production Traits in Holstein-Friesian Cattle. Livestock Production Science, 57(3), 203-217. https://doi.org/10.1016/S0301-6226(98)00181-X [Google Scholar] [Crossref] 
  13. Vila, J. P., Wagner, V., & Neveu, P. (2000). Bayesian Nonlinear Model Selection and Neural Networks: A Conjugate Prior Approach. IEEE Transactions on Neural Networks, 11(2), 265-78. https://doi:10.1109/72.838999 [Google Scholar] [Crossref] 
  14. Visscher, P. M., & Goddard, M. E. (1995). Genetic Parameters for Milk Yield, Survival, Workability, and Type Traits for Australian Dairy Cattle. Journal of Dairy Science, 78(1), 205-220. https://doi.org/10.3168/jds.S0022-0302(95)76630-9 [Google Scholar] [Crossref] 
  15. Zellner, A. (1971). An introduction to Bayesian inference in econometrics. John Wiley. [Google Scholar]