- Akaike, H. (1969). Fitting Autoregressive Models for Prediction. Annals of the Institute of Statistical Mathematics, 21(1), 243-247. https://doi.org/10.1007/BF02532251 [Google Scholar] [Crossref]
- Atar, D. (2016). Simulating the transition from even-aged longleaf plantations to old growth savannas with harvest management using a coupled multiple model framework [Master's thesis, University of Florida]. [Google Scholar]
- Carus, S. (1998). Aynıyaşlı doğu kayını (Fagus orientalis Lipsky.) ormanlarında artım ve büyüme [PhD dissertation, Istanbul University]. (in Turkish) [Google Scholar]
- Carus, S., & Çatal, Y. (2017). Ağlasun Yöresi Kızılçam (Pinus brutia Ten.) Ağaçlandırmaları İçin Bazı Çap-Boy Modellerinin Karşılaştırılması. Turkish Journal of Forestry, 18(2), 94-101. (in Turkish) https://doi.org/10.18182/tjf.289330 [Google Scholar] [Crossref]
- Curtis, R. O. (1967). Height-Diameter and Height-Diameter-Age Equations for Second-Growth Douglas-Fir. Forest Science, 13(4), 365–375. https://doi.org/10.1093/forestscience/13.4.365 [Google Scholar] [Crossref]
- Çatal, Y. (2009). Batı Akdeniz Bölgesi kızılçam (Pinus brutia Ten.) meşcerelerinde artım ve büyüme [PhD dissertation, Süleyman Demirel University]. (in Turkish) [Google Scholar]
- Çatal, Y. (2012). Göller Yöresinde Yalancı Akasya, Anadolu Karaçamı ve Toros Sediri Ağaç Türleri İçin Çap-Boy Modeli. SDÜ Orman Fakültesi Dergisi, 13(2), 92-96. (in Turkish) [Google Scholar]
- Diamantopoulou, M. J. (2006). Tree-Bole Volume Estimation on Standing Pine Trees Using Cascade Correlation Artificial Neural Network Models. Agricultural Engineering International: CIGR Journal, 8, 1-6. [Google Scholar]
- Diamantopoulou, M. J. (2012). Assessing A Reliable Modeling Approach of Features of Trees through Neural Network Models for Sustainable Forests. Sustainable Computing: Informatics and Systems, 2(4), 190-197. http://dx.doi.org/10.1016/j.suscom.2012.10.002 [Google Scholar]
- Eler, Ü. (2003). Dendrometri. Süleyman Demirel Üniversitesi Yayınevi. (in Turkish) [Google Scholar]
- Ercanli, İ., & Bolat, F. (2017). Diameter distribution modelling based on artificial neural networks for Kunduz forests [Oral presentation]. International Symposium on New Horizons in Forestry, Isparta, Turkey. [Google Scholar]
- GDF (2020). Orman varlığı. General Directorate of Forestry Publications. (in Turkish) [Google Scholar]
- Huxley, A. (1932). Problems of relative growth. The Dial Press. [Google Scholar]
- Keleş, S., & Bulut, S. (2014). Aynıyaşlı ve değişikyaşlı orman formlarının orman ekosistem fonksiyonları kapsamında karşılaştırılması [Oral presentation]. II. Ulusal Akdeniz Orman ve Çevre Sempozyumu, Isparta, Turkey. (in Turkish) [Google Scholar]
- Korf, V. (1939). Pfispevek k matematicke definici vzrustoveho zakona lesnich porostii. Lesnicka Prace, 18, 339-356. [Google Scholar]
- Li, Y. X., & Jiang, L. C. (2010). Application of ANN Algorithm in Tree Height Modeling. Applied Mechanics and Materials, 20, 756-761. https://doi.org/10.4028/www.scientific.net/AMM.20-23.756 [Google Scholar] [Crossref]
- MATLAB R2021a, The MathWorks, Inc., Natick, Massachusetts, United States. [Google Scholar]
- Meyer, H. A. (1940). A Mathematical Expression for Height Curves. Journal of Forestry, 38(5), 415-420. [Google Scholar]
- Ozkal, M. K. (2017). Models of forest inventory for Istanbul forest using airborne lidar and spaceborne imagery [Master's thesis, Michigan Technological University]. [Google Scholar]
- Özçelik, R., Diamantopoulou, M. J., Brooks, J. R., & Wiant Jr., H. V. (2010). Estimating Tree Bole Volume Using Artificial Neural Network Models for Four Species in Turkey. Journal of Environmental Management, 91(3), 742-753. https://doi.org/10.1016/j.jenvman.2009.10.002 [Google Scholar] [Crossref]
- Özçelik, R., Diamantopoulou, M. J., Crecente-Campo, F., & Eler, U. (2013). Estimating Crimean Juniper Tree Height Using Nonlinear Regression and Artificial Neural Network Models. Forest Ecology and Management, 306, 52-60. https://doi.org/10.1016/j.foreco.2013.06.009 [Google Scholar] [Crossref]
- Özçelik, R., & Çapar, C. (2014). Antalya Yöresi Doğal Kızılçam Meşcereleri Için Genelleştirilmiş Çap-Boy Modellerinin Geliştirilmesi. SDÜ Orman Fakültesi Dergisi, 15(1), 44-52. (in Turkish) https://doi.org/10.18182/tjf.01926 [Google Scholar] [Crossref]
- Poudel, K. P., & Cao, Q. V. (2013). Evaluation of Methods to Predict Weibull Parameters for Characterizing Diameter Distributions. Forest Science, 59(2), 243-252. https://doi.org/10.5849/forsci.12-001 [Google Scholar] [Crossref]
- R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ [Google Scholar]
- Sakici, O. E., & Ozdemir, G. (2018). Stem Taper Estimations with Artificial Neural Networks for Mixed Oriental Beech and Kazdaği Fir Stands in Karabük Region, Turkey. Cerne, 24(4), 439-451. https://doi.org/10.1590/01047760201824042572 [Google Scholar] [Crossref]
- Schikowski, A. B., Corte, A. P., Ruza, M. S., Sanquetta, C. R., & Montano, R. A. (2018). Modeling of Stem Form and Volume through Machine Learning. Anais da Academia Brasileira de Ciências, 90(4), 3389-3401. [Google Scholar]
- Schumacher, F. X. (1939). A new growth curve and its application to timber yield studies. Journal of Forestry, 37(10), 819-820. [Google Scholar]
- Seki, M. (2020). Kastamonu Orman Bölge Müdürlüğü karaçam (Pinus nigra J.F. Arnold) meşcerelerine ilişkin ekolojik tabanlı büyüme modelleri [PhD dissertation, Kastamonu University]. (in Turkish) [Google Scholar]
- Socha, J., Netzel, P., & Cywicka, D. (2020). Stem Taper Approximation by Artificial Neural Network and A Regression Set Models. Forests, 11(1), 79. https://doi.org/10.3390/f11010079 [Google Scholar] [Crossref]
- Temesgen, H., Hann, D. W., & Monleon, V. J. (2007). Regional Height-Diameter Equations for Major Tree Species of Southwest Oregon. Western Journal of Applied Forestry, 22(3), 213-219. https://doi.org/10.1093/wjaf/22.3.213 [Google Scholar] [Crossref]
- Thanh, T. N., Tien, T. D., & Shen, H. L. (2019). Height-Diameter Relationship for Pinus koraiensis in Mengjiagang Forest Farm of Northeast China Using Nonlinear Regressions and Artificial Neural Network Models. Journal of Forest Science, 65(4), 134-143. https://doi.org/10.17221/5/2019-JFS [Google Scholar] [Crossref]
- Wykoff, W., Crookston, N., & Stage, A. (1982). User’s guide to the stand prognosis model. Ogden. [Google Scholar]
|