|  e-ISSN: 2791-7169

Original article | Journal of Biometry Studies 2021, Vol. 1(1) 1-7

Comparison of traditional regression models and artificial neural network models for height-diameter modeling in uneven-aged fir stands

Mustafa Kağan ÖZKAL, Davut ATAR, Mehmet AYDIN, Fatih TUNÇ

pp. 1 - 7   |  DOI: https://doi.org/10.29329/JofBS.2021.348.01   |  Manu. Number: MANU-2106-15-0003.R1

Published online: June 29, 2021  |   Number of Views: 211  |  Number of Download: 530


Abstract

Forests have been constantly growing with their dynamic structure. In order for this dynamic structure must be managed based on sustainable perspective. Diameter, height, age, stand structure, etc. parameters are used in the inventory stage of the planning. The easiest to measure among these parameters is the diameter. Therefore, the developed models are usually aimed at reaching other forest parameters from the diameter. In this article, 9 different height-diameter models were fitted using regression models, and feed-forward backpropagation artificial neural network model methods for uneven-aged fir (Abies nordmanniana subsp. equi-trojani) stands in Kökez, Bolu region of Turkey. The models compared based on adjusted R², bias, absolute bias, and root mean square error (RMSE). It was observed that the best result was obtained from the artificial neural network model, and the worst result was obtained from the power model.

Keywords: Linear models, Nonlinear models, Artificial Neural Network models (ANN), Height-diameter models, Feed-forward backpropagation ANN


How to Cite this Article?

APA 6th edition
OZKAL, M.K., ATAR, D., AYDIN, M. & TUNC, F. (2021). Comparison of traditional regression models and artificial neural network models for height-diameter modeling in uneven-aged fir stands . Journal of Biometry Studies, 1(1), 1-7. doi: 10.29329/JofBS.2021.348.01

Harvard
OZKAL, M., ATAR, D., AYDIN, M. and TUNC, F. (2021). Comparison of traditional regression models and artificial neural network models for height-diameter modeling in uneven-aged fir stands . Journal of Biometry Studies, 1(1), pp. 1-7.

Chicago 16th edition
OZKAL, Mustafa Kagan, Davut ATAR, Mehmet AYDIN and Fatih TUNC (2021). "Comparison of traditional regression models and artificial neural network models for height-diameter modeling in uneven-aged fir stands ". Journal of Biometry Studies 1 (1):1-7. doi:10.29329/JofBS.2021.348.01.

References
  1. Akaike, H. (1969). Fitting Autoregressive Models for Prediction. Annals of the Institute of Statistical Mathematics, 21(1), 243-247. https://doi.org/10.1007/BF02532251 [Google Scholar] [Crossref] 
  2. Atar, D. (2016). Simulating the transition from even-aged longleaf plantations to old growth savannas with harvest management using a coupled multiple model framework [Master's thesis, University of Florida]. [Google Scholar]
  3. Carus, S. (1998). Aynıyaşlı doğu kayını (Fagus orientalis Lipsky.) ormanlarında artım ve büyüme [PhD dissertation, Istanbul University]. (in Turkish) [Google Scholar]
  4. Carus, S., & Çatal, Y. (2017). Ağlasun Yöresi Kızılçam (Pinus brutia Ten.) Ağaçlandırmaları İçin Bazı Çap-Boy Modellerinin Karşılaştırılması. Turkish Journal of Forestry, 18(2), 94-101. (in Turkish) https://doi.org/10.18182/tjf.289330 [Google Scholar] [Crossref] 
  5. Curtis, R. O. (1967). Height-Diameter and Height-Diameter-Age Equations for Second-Growth Douglas-Fir. Forest Science, 13(4), 365–375. https://doi.org/10.1093/forestscience/13.4.365 [Google Scholar] [Crossref] 
  6. Çatal, Y. (2009). Batı Akdeniz Bölgesi kızılçam (Pinus brutia Ten.) meşcerelerinde artım ve büyüme [PhD dissertation, Süleyman Demirel University]. (in Turkish) [Google Scholar]
  7. Çatal, Y. (2012). Göller Yöresinde Yalancı Akasya, Anadolu Karaçamı ve Toros Sediri Ağaç Türleri İçin Çap-Boy Modeli. SDÜ Orman Fakültesi Dergisi, 13(2), 92-96. (in Turkish) [Google Scholar]
  8. Diamantopoulou, M. J. (2006). Tree-Bole Volume Estimation on Standing Pine Trees Using Cascade Correlation Artificial Neural Network Models. Agricultural Engineering International: CIGR Journal, 8, 1-6. [Google Scholar]
  9. Diamantopoulou, M. J. (2012). Assessing A Reliable Modeling Approach of Features of Trees through Neural Network Models for Sustainable Forests. Sustainable Computing: Informatics and Systems, 2(4), 190-197. http://dx.doi.org/10.1016/j.suscom.2012.10.002 [Google Scholar]
  10. Eler, Ü. (2003). Dendrometri. Süleyman Demirel Üniversitesi Yayınevi. (in Turkish) [Google Scholar]
  11. Ercanli, İ., & Bolat, F. (2017). Diameter distribution modelling based on artificial neural networks for Kunduz forests [Oral presentation]. International Symposium on New Horizons in Forestry, Isparta, Turkey. [Google Scholar]
  12. GDF (2020). Orman varlığı. General Directorate of Forestry Publications. (in Turkish) [Google Scholar]
  13. Huxley, A. (1932). Problems of relative growth. The Dial Press. [Google Scholar]
  14. Keleş, S., & Bulut, S. (2014). Aynıyaşlı ve değişikyaşlı orman formlarının orman ekosistem fonksiyonları kapsamında karşılaştırılması [Oral presentation]. II. Ulusal Akdeniz Orman ve Çevre Sempozyumu, Isparta, Turkey. (in Turkish) [Google Scholar]
  15. Korf, V. (1939). Pfispevek k matematicke definici vzrustoveho zakona lesnich porostii. Lesnicka Prace, 18, 339-356. [Google Scholar]
  16. Li, Y. X., & Jiang, L. C. (2010). Application of ANN Algorithm in Tree Height Modeling. Applied Mechanics and Materials, 20, 756-761. https://doi.org/10.4028/www.scientific.net/AMM.20-23.756 [Google Scholar] [Crossref] 
  17. MATLAB R2021a, The MathWorks, Inc., Natick, Massachusetts, United States. [Google Scholar]
  18. Meyer, H. A. (1940). A Mathematical Expression for Height Curves. Journal of Forestry, 38(5), 415-420. [Google Scholar]
  19. Ozkal, M. K. (2017). Models of forest inventory for Istanbul forest using airborne lidar and spaceborne imagery [Master's thesis, Michigan Technological University]. [Google Scholar]
  20. Özçelik, R., Diamantopoulou, M. J., Brooks, J. R., & Wiant Jr., H. V. (2010). Estimating Tree Bole Volume Using Artificial Neural Network Models for Four Species in Turkey. Journal of Environmental Management, 91(3), 742-753. https://doi.org/10.1016/j.jenvman.2009.10.002 [Google Scholar] [Crossref] 
  21. Özçelik, R., Diamantopoulou, M. J., Crecente-Campo, F., & Eler, U. (2013). Estimating Crimean Juniper Tree Height Using Nonlinear Regression and Artificial Neural Network Models. Forest Ecology and Management, 306, 52-60. https://doi.org/10.1016/j.foreco.2013.06.009 [Google Scholar] [Crossref] 
  22. Özçelik, R., & Çapar, C. (2014). Antalya Yöresi Doğal Kızılçam Meşcereleri Için Genelleştirilmiş Çap-Boy Modellerinin Geliştirilmesi. SDÜ Orman Fakültesi Dergisi, 15(1), 44-52. (in Turkish) https://doi.org/10.18182/tjf.01926 [Google Scholar] [Crossref] 
  23. Poudel, K. P., & Cao, Q. V. (2013). Evaluation of Methods to Predict Weibull Parameters for Characterizing Diameter Distributions. Forest Science, 59(2), 243-252. https://doi.org/10.5849/forsci.12-001 [Google Scholar] [Crossref] 
  24. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ [Google Scholar]
  25. Sakici, O. E., & Ozdemir, G. (2018). Stem Taper Estimations with Artificial Neural Networks for Mixed Oriental Beech and Kazdaği Fir Stands in Karabük Region, Turkey. Cerne, 24(4), 439-451. https://doi.org/10.1590/01047760201824042572 [Google Scholar] [Crossref] 
  26. Schikowski, A. B., Corte, A. P., Ruza, M. S., Sanquetta, C. R., & Montano, R. A. (2018). Modeling of Stem Form and Volume through Machine Learning. Anais da Academia Brasileira de Ciências, 90(4), 3389-3401. [Google Scholar]
  27. Schumacher, F. X. (1939). A new growth curve and its application to timber yield studies. Journal of Forestry, 37(10), 819-820. [Google Scholar]
  28. Seki, M. (2020). Kastamonu Orman Bölge Müdürlüğü karaçam (Pinus nigra J.F. Arnold) meşcerelerine ilişkin ekolojik tabanlı büyüme modelleri  [PhD dissertation, Kastamonu University]. (in Turkish) [Google Scholar]
  29. Socha, J., Netzel, P., & Cywicka, D. (2020). Stem Taper Approximation by Artificial Neural Network and A Regression Set Models. Forests, 11(1), 79. https://doi.org/10.3390/f11010079 [Google Scholar] [Crossref] 
  30. Temesgen, H., Hann, D. W., & Monleon, V. J. (2007). Regional Height-Diameter Equations for Major Tree Species of Southwest Oregon. Western Journal of Applied Forestry, 22(3), 213-219. https://doi.org/10.1093/wjaf/22.3.213 [Google Scholar] [Crossref] 
  31. Thanh, T. N., Tien, T. D., & Shen, H. L. (2019). Height-Diameter Relationship for Pinus koraiensis in Mengjiagang Forest Farm of Northeast China Using Nonlinear Regressions and Artificial Neural Network Models. Journal of Forest Science, 65(4), 134-143. https://doi.org/10.17221/5/2019-JFS [Google Scholar] [Crossref] 
  32. Wykoff, W., Crookston, N., & Stage, A. (1982). User’s guide to the stand prognosis model. Ogden. [Google Scholar]